JoomlaLock.com All4Share.net
Del Constructor

Del Constructor

Email: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.
Miércoles, 13 Diciembre 2017 16:21

PREMIOS ADDIP 2017 A LA EXCELENCIA EN OBRA REALIZADA

El pasado 5 de Diciembre de 2017, tuvo lugar la 12ª. edición de la ya clásica entrega de los PREMIOS ADDIP  A LA EXCELENCIA EN OBRA REALIZADA con más de 150 asistentes entre profesionales, estudiantes, técnicos y empresarios del interiorismo, como así también junto a instituciones amigas, entre otros.

ADDIP hace un reconocimiento especial a todas las empresas que nos acompañaron y que con su apoyo, hicieron posible la velada: Abbate Mármoles, Abelenda Hnos., Acrílicos Sudamericanos, Arqa, Vidrería Bia, Instituto Bios, Bosch y Cía., Champagne Home & Deco, Enko, Inca, Juan Construye, Laviere Vitacca, Lyte Iluminación Técnica, Master Key cerraduras biométricas, Mensuario del Constructor, Metropolitana, Montecuir, Motif del Uruguay, Universidad ORT, Suvinil, Tecnolux, Todeschini y UDE. Y con el apoyo de: Marmolería Anibal Abbate, G&V Construcciones (Gustavo Techera) y Darko Lighting.

En la primera fase de la noche se hizo entrega a los PREMIOS ADDIP A LA EXCELENCIA EN OBRA REALIZADA, cuyo reconocimiento destaca la labor profesional en la realización de obras en diferentes categorías. A continuación los flamantes ganadores:

  1. ESPACIO COMERCIAL

LOCAL LAVIERE Y VITACCA en Sinergia, Autor: Estudio La Agencia

  1. ESPACIO COMERCIAL HOTELERO

HOTEL HAMPTON BY HILTON, Autores: Gualano + Gualano arquitectos, Arq. Marcelo Gualano y Arq. Martín Gualano.

  1. ESPACIO COMERCIAL GASTRONÓMICO

PELLEGRIN BOUTIQUE GOURMET CARRASCO Autores: Estudio Movi – Arq. Diana Aguiar, Arq. Pablo Bacchetta, Arq. José Flores, Arq. Martín Larrosa.

  1. MICROESPACIO COMERCIAL

MATIAS LAWLOR TATOO STUDIO Autores: Estudio VAMO.uy. Licenciada en Diseño de Interiores Bettina Angeloni, Licenciado en Diseño de Interiores Emilio Viaño, Diseñador Flavio Morán y Licenciado en Diseño de Interiores Teo Corp.

  1. ESPACIO EXTERIOR

PISCINAS, Autor: Diseñador. Juan Carlos Areoso.

  1. ESPACIO DE TRABAJO

IRONHIDE, Autor: Estudio Martínez Rudolph Arquitectos. Arquitecto Nicolás Rudolph y Arquitecto Sebastián Martínez.

  1. DISEÑO EFÍMERO CONCEPTUAL

LOFT PARA UN HOMBRE QUE LE GUSTA LA MÚSICA Y VIVIR SÓLO, CON ALGÚN TOUCH AND GO,  Autor: Diseñador. Juan Carlos Areoso.

  1. DISEÑO EFÍMERO COMERCIAL

STAND ZONA M, Autor: Arquitecto Fernando De León

  1. ESPACIO RESIDENCIAL

APARTAMENTO EN CARRASCO, Autor: Diseñador Juan Carlos Areoso.

  1. MICROESPACIO RESIDENCIAL

LÁTELIER, UN PETIT CUBE NOIR, Arquitecta Mariana Ures, Colaborador: Ingeniero  Jean Hercher y Diseñadora Dominique Ribeiro.

  1. DISEÑO DE EQUIPAMIENTO

ESCRITORIO KILDE,  Autoras: Licenciada en Diseño de Interiores Alejandra Peixoto y Licenciada en Diseño de  Interiores Sabrina Curbelo.

 

En la segunda fase de la noche, se realizó la entrega de los PREMIOS HONORÍFICOS, los cuales reconocen a aquellas personas que por su labor profesional, institucional y/o representatividad, tanto en nuestro país como en el exterior, marcan una trayectoria de excelencia  y relevancia en el diseño de interiores.

A continuación los ganadores de los PREMIOS HONORÍFICOS 2017:

 

  1. TRAYECTORIA PROFESIONAL

Interiorista Andrés Buencristiano

  1. DISEÑO DE EQUIPAMIENTO JUVENIL

Dis. Eduardo Gimenez Rey

  1. APOYO CONSECUENTE

Empresa ACHER

  1. LIDERAZGO COMERCIAL

Empresa BARRACA PARANÁ

  1. CONTRIBUCIÓN AL DISEÑO

Arq. Gabriela Pallares

  1. CONFRATERNIDAD CON ADDIP

Raquel Rodríguez de la Empresa Lyte iluminación Técnica

  1. APOYO A LA LABOR PROFESIONAL

Analía Baserga de la Empresa Lyte iluminación Técnica

  1. TRAYECTOTRIA INTERNACIONAL

Dis. Juan Pablo Roca

  1. CONTRIBUCIÓN AL DISEÑO INTERNACIONAL

Dis. Shashi Caan

 

Agradecemos a todos aquellos que hicieron posible la realización del evento más importante que organiza ADDIP en su doceava edición.

Miércoles, 13 Diciembre 2017 16:11

Acto electoral 2017 - APPCU

Miércoles, 13 Diciembre 2017 16:00

Índice del Costo de la Construcción, octubre 2017

El Índice del Costo de la Construcción (ICC) que elabora este Instituto, presentó una suba de 4,50% en Octubre de 2017 y su número índice se fijó en 618,17. La variación acumulada en el año es de 7,77 y en los últimos 12 meses fue de 12,31.
En materiales el número índice es de 488,19, reflejándose una suba de 0,59%, con una incidencia de 0,14 puntos porcentuales.
En mano de obra el número índice es de 816,56, presentando una suba de 6,63% con una incidencia de 2,17 puntos porcentuales.
Estos valores reflejan el aumento fijado por el Consejo de Salarios del Grupo 9.1 “Industria de la Construcción y Actividades Complementarias”.

(Fuente INE)

 

VARIACIÓN MENSUAL

1) Indice General. 2) Indice General sin Impuestos. 3) Indice Parcial.

4) Indice Parcial sin Impuestos. 5) Indice de Materiales. 6) Indice de Mano de Obra.

7) Indice de Gastos Generales. 8) Indice de Impuestos. 9) Indice de Leyes Sociales.

10) Indice de Conexiones Definitivas. 11) Indice de Costos de Permisos.

En el marco de la 3ª Jornada de Avances en Diseño y Tecnología del Hormigón, realizada el pasado viernes 27 de octubre,  en el Anfiteatro del Edificio Polifuncional “José Luis Massera”, en la Facultad de Ingeniería, conversamos con el Ingeniero Civil de la Universidad de la República Luis Segura, sobre el hormigón reforzado con fibras, lo que supone una nueva tecnología y una evolución del clásico material utilizado en la industria, que proporciona rapidez en la construcción, optimiza el uso del material y reduce los costos.

Segura, quien además es Doctor en Ingeniería de la Construcción por la Universidad Politécnica de Cataluña  y profesor a tiempo completo del Departamento de Estructuras de la Facultad de Ingeniería, y miembro del Sistema Nacional de Investigadores, de la Agencia Nacional de Investigación e Innovación (ANII), se refirió además a algunos de los proyectos y estudios que se están realizando, junto a la Facultad de Arquitectura, empresas, y emprendedores privados en esta área en el Uruguay.

 

¿Cuáles fueron los objetivos de este encuentro que reunió especialistas nacionales y extranjeros? 

Esta ya es la tercera jornada que se organiza. La idea es que sea un punto de encuentro y de difusión de avances en tecnología del hormigón, desde aquellas de uso habitual en el medio, hasta futuras líneas de desarrollo, tanto para el Uruguay como de otros lados del mundo. Básicamente, mostrar hacia dónde está tendiendo la investigación, principalmente, la investigación aplicada, que es la que más me interesa. Creo que la ingeniería, si no es aplicada, no es ingeniería.

En estas jornadas en particular, también hubo otro foco importante, que es el desarrollo normativo y el vínculo entre los distintos grupos de investigación y desarrollo, tanto a nivel nacional como a nivel mundial. Porque cada vez estamos más conectados y es necesario participar de esa conexión, ya que te permite avanzar a mejor ritmo y con mayor seguridad.  A este encuentro, además de los especialistas uruguayos Gemma Rodríguez y María Noel Pereyra (ver recuadro), vinieron Sergio Cavalaro, Ingeniero Civil y Doctor en Ingeniería de la Construcción por la Universidad Politécnica de Cataluña, con el cual tengo un vínculo cotidiano, y el profesor György L. Balázs, de la Universidad de Tecnología y Economía de Budapest en Hungría, que es presidente honorario de la Federación Internacional de Hormigón (fib). La fib es uno de los grupos de desarrollo más grandes que hay, a nivel mundial, en cuanto a hormigón. Esta federación está en una línea más europea, pero intenta, y está dedicando grandes esfuerzos para ello, tener un carácter cada vez más mundial. Esta es parte de la razón por la cual el profesor Balázs aceptó estar presente, para que Uruguay (y en general toda Sudamérica), se integren a la fib. Para tratar de que la federación sea realmente una organización mundial. La otra gran asociación internacional, quizás con un carácter más pragmático, es la ACI americana, que tiene mucha influencia en Estados Unidos, Canadá, México y gran parte de América del Sur, principalmente el norte y este. Entonces, como mensaje fuerte que se quería transmitir en esta jornada, es la necesidad de formar un grupo de trabajo nacional enfocado al desarrollo del hormigón, en el cual se puedan organizar y articular las necesidades y los distintos esfuerzos que se realizan a nivel nacional, tanto por parte de las universidades, las empresas, como los distintos profesionales y técnicos relacionados con este material. A mi entender, una tarea imperiosa que tendría este grupo a corto plazo sería la actualización de la normativa nacional. En paralelo, se tendría que pensar el vínculo que tendría esta asociación con las organizaciones internacionales, como la fib, la ACI, u otras, como puede ser la RILEM, con mayor presencia en Latinoamérica.

 

A veces se asocia al hormigón como un material que no ha evolucionado. ¿Qué puede decir al respecto?

Eso es parte de la visión que nos trasmitieron ciertos actores. Recuerdo haber escuchado en clase: “En el hormigón está todo inventado. Si se hace así hace años y funciona bien, ¿Por qué cambiar?”. Esta es una de las razones, no la única, por la cual nos hemos quedado un poco y tenemos bastante camino por recorrer.  En el mundo, el hormigón claramente siguió avanzando, y lo sigue haciendo cada vez a pasos más acelerados. Básicamente, los objetivos principales siguen siendo los mismos: construir estructuras seguras y económicas. Pero hay nuevas técnicas, nuevas formas de diseño y metodologías más eficientes. Ahora hay también un nuevo objetivo, que está cada vez más presente, la sustentabilidad. Somos cada vez más conscientes de que los recursos son limitados y que hay que cuidarlos. En todos estos aspectos, día a día se producen avances, los cuales se aplican cada vez más rápido. En Uruguay tenemos que tratar de recuperar el paso para ponernos un poco más al día.

 

Nuevas tecnologías

¿Qué nuevas tecnologías hay aplicadas al hormigón? 

La lista es bastante larga, desde materiales (autocompactante, alta resistencia, reciclados, “ecológicos”, GFRC, CFRC), técnicas (proyectado, refuerzos externos), medios de cálculo (Calculo computacional, análisis no lineal, niveles de cálculo), inspección (ensayos no destructivos). O por ejemplo, mi área de especialidad: trabajo particularmente en hormigones reforzados con fibras. Ese es un campo que viene evolucionando hace más de 40 años, pero ha tenido un boom en, quizás, la última década, al incorporarse a la normativa de varios países Europeos, y redactarse algunas recomendaciones de la ACI. Ya hay muchas aplicaciones que en otros lugares se utilizan a diario y que se realizan con criterios ingenieriles, con metodologías de diseño claras, con formas de control y de ejecución bien definidas, para obtener un resultado óptimo, con el equilibrio deseado entre desempeño, seguridad y economía.

 

¿Cómo sería el hormigón con fibra?

La idea es, en vez de tener un refuerzo continuo y de gran diámetro, como son ahora las barras de acero, utilizar un refuerzo disperso, formado por fibras cortas, de tres a seis centímetros de largo, que pueden ser de acero como el refuerzo tradicional, o plásticas, de distintos tipos de polímeros. Más recientemente se incorporaron también fibras de vidrio. Todas ellas le dan a la matriz una cierta resistencia a tracción que mejora mucho de sus propiedades.

La gracia es que estas fibras se mezclan en la hormigonera como un componente más del hormigón, como si fueran agregados, y directamente se llenan los encofrados, incluyendo el armado adentro de la propia mezcla. Es un armado donde las fibras se distribuyen, en principio, en forma aleatoria, uniformemente distribuidas y orientadas. Hoy sabemos que hay ciertas orientaciones preferenciales en algunos casos, pero que se pueden utilizar a nuestro favor. Las fibras pueden sustituir parcial, o totalmente, a las barras de armado. Esto otorga una rapidez de ejecución, ya que te ahorra todo el proceso de doblado y colocación del hierro y los problemas de posicionamiento de las barras, que con las fibras, al estar uniformemente distribuidas, quedan cubiertos.

Hay distintas aplicaciones en el uso del hormigón reforzado con fibras que ya se están utilizando. Las tradicionales son pavimentos, ya sean industriales, como viales, o en hormigón proyectado; por ejemplo, en el caso de túneles o para estabilidad de taludes. También, se está utilizando mucho en las dovelas de túneles fabricados con tuneladora. Ya que cuando tenés elementos de baja responsabilidad estructural las fibras pueden sustituir completamente al hierro, en estas aplicaciones es donde se vieron las principales ventajas en cuanto a desempeño, rapidez de ejecución, y economía.

En la actualidad, luego de más de 40 años de desarrollo, hay más confianza en el material y, al haber reglas claras de cómo diseñar, se está empezando a ir a elementos de mayor responsabilidad. Por ejemplo, en los últimos años se han construidos más de 40 edificios con sustitución total de las barras de acero por fibras en las losas. Hay que aclarar que no se puede sustituir la armadura en todos los elementos de un edificio. Por ejemplo, en vigas y pilares, donde las tracciones se encuentran bien localizadas, no hay forma de competir con la barra de acero. Pero donde hay esfuerzos dispersos y el elemento estructural va a estar actuando simultáneamente en varios lugares, en cada uno de ellos las fibras van a estar colaborando. O si hay redundancia estructural, o sea elementos hiperestáticos como son las losas continuas, la capacidad de redistribución da la seguridad necesaria para confiar en ellas. Hay que aclarar que las losas elevadas llevan más cantidad de fibra. Por poner un orden de magnitud, ahí estamos hablando de noventa quilogramos de fibra por metro cúbico de hormigón, mientras que en pavimento sería del orden de entre veinte a cuarenta quilogramos por metro cúbico.

 

Proyectos y estudios

¿Qué estudios está realizando en este sentido la Facultad de Ingeniería? 

Estamos trabajando en varios frentes, trabajando con distintos grupos. En particular, con Gemma Rodríguez, profesora titular del Instituto de la Construcción de la Facultad de Arquitectura. Ella es actualmente responsable de un proyecto financiado por la Agencia Nacional de Investigación e Innovación (ANII), a través del Fondo María Viñas. Ahí estamos trabajando junto a la empresa Flasur, que hace premoldeados, justamente para estudiar en paneles, la sustitución de la malla por fibra.  En una primera instancia estamos solamente sustituyendo la malla por fibra para evaluar el comportamiento. La idea es que si el comportamiento es el esperado se puede, por ejemplo, reducir los espesores de los paneles para optimizarlos. Actualmente el espesor de cada capa de los paneles tiene que ser del orden de cinco centímetros para poder darle el recubrimiento al acero. Al ponerle fibra se podría pensar en reducir el espesor, lo que lleva a un ahorro de material, sin comprometer la seguridad del elemento.

 

¿Cuesta mucho imponer la fibra en sustitución del acero a las empresas constructoras?

Ya se utiliza habitualmente en pavimentos y premoldeados. Por ejemplo, hay una empresa pequeña, FER-MENTO, que hace años ya realiza premoldeados de baja responsabilidad.  Hay cierto conservadurismo sobre la sustitución del acero por fibra, pero esto no sólo ocurre en Uruguay, sino que también en la industria de la construcción en todo el mundo. En parte, cierta razón tienen, ya que el producto necesita, como toda obra de ingeniería civil, de un buen nivel de seguridad. Por eso es que los pasos hay que darlos con cuidado. No obstante, esta tecnología, en otras partes del mundo se está aplicando con mucha seguridad, con resultados más que verificados.

Tampoco es un proceso fácil, porque esta tecnología en particular requiere para su utilización que toda la cadena de producción esté al tanto de los cambios que hay que hacer. Esto conlleva, por ejemplo, a ajustar la dosificación de la mezcla para no perder resistencia a compresión. Hay que saber cuáles son las reglas de diseño ya que, aunque están basadas en las mismas reglas que el hormigón armado convencional, hay que realizar ciertos ajustes para poder considerar la resistencia a la tracción que aporta la fibra.

Otro paso muy importante en este proceso es el del control de calidad. Hay que evaluar que este tipo de hormigón que se produce tenga la resistencia a tracción que se requiere, y con la cual se diseñó el elemento. Para esto, tenemos que tener laboratorios de ensayos capaces de realizar los ensayos específicos para evaluar este material. En cada uno de estos pasos hay que vencer pequeñas barreras, y lograr adaptaciones para introducir con éxito esta tecnología.

La idea de los proyectos que estamos llevando adelante es dar estos pasos de manera controlada, de la mano con las empresas y organismos que mañana podrían utilizar habitualmente este material. Además del que ya nombré, tenemos un par de proyectos llevados adelante por estudiantes de posgrado, y un proyecto más grande de un grupo de estudiantes de fin de carrera junto a la empresa Teyma, quien también está evaluando el uso de fibras. Con Teyma ya concluimos un proyecto para evaluar su uso en pavimentos, y ahora quieren explorar otras posibilidades. En particular, estamos haciendo los estudios para construir una losa elevada, que, a nuestro entender, sería la primera en Sudamérica. Lo haríamos primero a nivel experimental, a escala, pero al comprobar que funciona estructuralmente y rinde a nivel económico, se extendería a aplicaciones reales.

 

¿Cómo se puede trabajar la sustentabilidad edilicia asociada al hormigón?

Se puede trabajar en diferentes aspectos. Existe la sustentabilidad a nivel de diseño arquitectónico, por ejemplo, optimizando el uso de las fuentes de luz y calor naturales. En lo que refiere a mi trabajo, se podría intervenir en el diseño de la estructura misma del edificio. Las causas de emisiones de dióxido de carbono al ambiente, que es uno de los indicadores principales que se utiliza para evaluar la sostenibilidad, están asociadas principalmente a la producción de cemento. Aproximadamente la cifra es: por una tonelada de cemento que se coloca en un edificio, hay una tonelada de CO2 que se libera a la atmósfera. Esta es una cifra que impacta, e influye en aproximadamente el 5% de las emisiones totales de CO2 a nivel mundial. Sin embargo, hay varias formas de reducir ese consumo. Se podría apuntar a la estrategia mencionada por Sergio Cavalaro en su presentación: añadir valor agregado a nuestros productos. Solo por nombrar un ejemplo, se pueden lograr hormigones de mayor resistencia, sin aumentar la cantidad de cemento. Mediante una correcta selección de los materiales, y el uso de aditivos, se logra una matriz muy compacta con una baja relación agua/cemento. Se utilizaría un material que, por metro cúbico es más caro, pero serían necesarias menores cantidades. Se reducen los volúmenes de nuestras estructuras y el costo total, reduciendo a la par las emisiones de CO2. Son alternativas que vale la pena explorar.

En el marco de la 3ª Jornada de Avances en Diseño y Tecnología del Hormigón, realizada el pasado viernes 27 de octubre,  en el Anfiteatro del Edificio Polifuncional “José Luis Massera”, en la Facultad de Ingeniería, conversamos con el Ingeniero Civil de la Universidad de la República Luis Segura, sobre el hormigón reforzado con fibras, lo que supone una nueva tecnología y una evolución del clásico material utilizado en la industria, que proporciona rapidez en la construcción, optimiza el uso del material y reduce los costos.

Segura, quien además es Doctor en Ingeniería de la Construcción por la Universidad Politécnica de Cataluña  y profesor a tiempo completo del Departamento de Estructuras de la Facultad de Ingeniería, y miembro del Sistema Nacional de Investigadores, de la Agencia Nacional de Investigación e Innovación (ANII), se refirió además a algunos de los proyectos y estudios que se están realizando, junto a la Facultad de Arquitectura, empresas, y emprendedores privados en esta área en el Uruguay.

 

¿Cuáles fueron los objetivos de este encuentro que reunió especialistas nacionales y extranjeros? 

Esta ya es la tercera jornada que se organiza. La idea es que sea un punto de encuentro y de difusión de avances en tecnología del hormigón, desde aquellas de uso habitual en el medio, hasta futuras líneas de desarrollo, tanto para el Uruguay como de otros lados del mundo. Básicamente, mostrar hacia dónde está tendiendo la investigación, principalmente, la investigación aplicada, que es la que más me interesa. Creo que la ingeniería, si no es aplicada, no es ingeniería.

En estas jornadas en particular, también hubo otro foco importante, que es el desarrollo normativo y el vínculo entre los distintos grupos de investigación y desarrollo, tanto a nivel nacional como a nivel mundial. Porque cada vez estamos más conectados y es necesario participar de esa conexión, ya que te permite avanzar a mejor ritmo y con mayor seguridad.  A este encuentro, además de los especialistas uruguayos Gemma Rodríguez y María Noel Pereyra (ver recuadro), vinieron Sergio Cavalaro, Ingeniero Civil y Doctor en Ingeniería de la Construcción por la Universidad Politécnica de Cataluña, con el cual tengo un vínculo cotidiano, y el profesor György L. Balázs, de la Universidad de Tecnología y Economía de Budapest en Hungría, que es presidente honorario de la Federación Internacional de Hormigón (fib). La fib es uno de los grupos de desarrollo más grandes que hay, a nivel mundial, en cuanto a hormigón. Esta federación está en una línea más europea, pero intenta, y está dedicando grandes esfuerzos para ello, tener un carácter cada vez más mundial. Esta es parte de la razón por la cual el profesor Balázs aceptó estar presente, para que Uruguay (y en general toda Sudamérica), se integren a la fib. Para tratar de que la federación sea realmente una organización mundial. La otra gran asociación internacional, quizás con un carácter más pragmático, es la ACI americana, que tiene mucha influencia en Estados Unidos, Canadá, México y gran parte de América del Sur, principalmente el norte y este. Entonces, como mensaje fuerte que se quería transmitir en esta jornada, es la necesidad de formar un grupo de trabajo nacional enfocado al desarrollo del hormigón, en el cual se puedan organizar y articular las necesidades y los distintos esfuerzos que se realizan a nivel nacional, tanto por parte de las universidades, las empresas, como los distintos profesionales y técnicos relacionados con este material. A mi entender, una tarea imperiosa que tendría este grupo a corto plazo sería la actualización de la normativa nacional. En paralelo, se tendría que pensar el vínculo que tendría esta asociación con las organizaciones internacionales, como la fib, la ACI, u otras, como puede ser la RILEM, con mayor presencia en Latinoamérica.

 

A veces se asocia al hormigón como un material que no ha evolucionado. ¿Qué puede decir al respecto?

Eso es parte de la visión que nos trasmitieron ciertos actores. Recuerdo haber escuchado en clase: “En el hormigón está todo inventado. Si se hace así hace años y funciona bien, ¿Por qué cambiar?”. Esta es una de las razones, no la única, por la cual nos hemos quedado un poco y tenemos bastante camino por recorrer.  En el mundo, el hormigón claramente siguió avanzando, y lo sigue haciendo cada vez a pasos más acelerados. Básicamente, los objetivos principales siguen siendo los mismos: construir estructuras seguras y económicas. Pero hay nuevas técnicas, nuevas formas de diseño y metodologías más eficientes. Ahora hay también un nuevo objetivo, que está cada vez más presente, la sustentabilidad. Somos cada vez más conscientes de que los recursos son limitados y que hay que cuidarlos. En todos estos aspectos, día a día se producen avances, los cuales se aplican cada vez más rápido. En Uruguay tenemos que tratar de recuperar el paso para ponernos un poco más al día.

 

Nuevas tecnologías

¿Qué nuevas tecnologías hay aplicadas al hormigón? 

La lista es bastante larga, desde materiales (autocompactante, alta resistencia, reciclados, “ecológicos”, GFRC, CFRC), técnicas (proyectado, refuerzos externos), medios de cálculo (Calculo computacional, análisis no lineal, niveles de cálculo), inspección (ensayos no destructivos). O por ejemplo, mi área de especialidad: trabajo particularmente en hormigones reforzados con fibras. Ese es un campo que viene evolucionando hace más de 40 años, pero ha tenido un boom en, quizás, la última década, al incorporarse a la normativa de varios países Europeos, y redactarse algunas recomendaciones de la ACI. Ya hay muchas aplicaciones que en otros lugares se utilizan a diario y que se realizan con criterios ingenieriles, con metodologías de diseño claras, con formas de control y de ejecución bien definidas, para obtener un resultado óptimo, con el equilibrio deseado entre desempeño, seguridad y economía.

 

¿Cómo sería el hormigón con fibra?

La idea es, en vez de tener un refuerzo continuo y de gran diámetro, como son ahora las barras de acero, utilizar un refuerzo disperso, formado por fibras cortas, de tres a seis centímetros de largo, que pueden ser de acero como el refuerzo tradicional, o plásticas, de distintos tipos de polímeros. Más recientemente se incorporaron también fibras de vidrio. Todas ellas le dan a la matriz una cierta resistencia a tracción que mejora mucho de sus propiedades.

La gracia es que estas fibras se mezclan en la hormigonera como un componente más del hormigón, como si fueran agregados, y directamente se llenan los encofrados, incluyendo el armado adentro de la propia mezcla. Es un armado donde las fibras se distribuyen, en principio, en forma aleatoria, uniformemente distribuidas y orientadas. Hoy sabemos que hay ciertas orientaciones preferenciales en algunos casos, pero que se pueden utilizar a nuestro favor. Las fibras pueden sustituir parcial, o totalmente, a las barras de armado. Esto otorga una rapidez de ejecución, ya que te ahorra todo el proceso de doblado y colocación del hierro y los problemas de posicionamiento de las barras, que con las fibras, al estar uniformemente distribuidas, quedan cubiertos.

Hay distintas aplicaciones en el uso del hormigón reforzado con fibras que ya se están utilizando. Las tradicionales son pavimentos, ya sean industriales, como viales, o en hormigón proyectado; por ejemplo, en el caso de túneles o para estabilidad de taludes. También, se está utilizando mucho en las dovelas de túneles fabricados con tuneladora. Ya que cuando tenés elementos de baja responsabilidad estructural las fibras pueden sustituir completamente al hierro, en estas aplicaciones es donde se vieron las principales ventajas en cuanto a desempeño, rapidez de ejecución, y economía.

En la actualidad, luego de más de 40 años de desarrollo, hay más confianza en el material y, al haber reglas claras de cómo diseñar, se está empezando a ir a elementos de mayor responsabilidad. Por ejemplo, en los últimos años se han construidos más de 40 edificios con sustitución total de las barras de acero por fibras en las losas. Hay que aclarar que no se puede sustituir la armadura en todos los elementos de un edificio. Por ejemplo, en vigas y pilares, donde las tracciones se encuentran bien localizadas, no hay forma de competir con la barra de acero. Pero donde hay esfuerzos dispersos y el elemento estructural va a estar actuando simultáneamente en varios lugares, en cada uno de ellos las fibras van a estar colaborando. O si hay redundancia estructural, o sea elementos hiperestáticos como son las losas continuas, la capacidad de redistribución da la seguridad necesaria para confiar en ellas. Hay que aclarar que las losas elevadas llevan más cantidad de fibra. Por poner un orden de magnitud, ahí estamos hablando de noventa quilogramos de fibra por metro cúbico de hormigón, mientras que en pavimento sería del orden de entre veinte a cuarenta quilogramos por metro cúbico.

 

Proyectos y estudios

¿Qué estudios está realizando en este sentido la Facultad de Ingeniería? 

Estamos trabajando en varios frentes, trabajando con distintos grupos. En particular, con Gemma Rodríguez, profesora titular del Instituto de la Construcción de la Facultad de Arquitectura. Ella es actualmente responsable de un proyecto financiado por la Agencia Nacional de Investigación e Innovación (ANII), a través del Fondo María Viñas. Ahí estamos trabajando junto a la empresa Flasur, que hace premoldeados, justamente para estudiar en paneles, la sustitución de la malla por fibra.  En una primera instancia estamos solamente sustituyendo la malla por fibra para evaluar el comportamiento. La idea es que si el comportamiento es el esperado se puede, por ejemplo, reducir los espesores de los paneles para optimizarlos. Actualmente el espesor de cada capa de los paneles tiene que ser del orden de cinco centímetros para poder darle el recubrimiento al acero. Al ponerle fibra se podría pensar en reducir el espesor, lo que lleva a un ahorro de material, sin comprometer la seguridad del elemento.

 

¿Cuesta mucho imponer la fibra en sustitución del acero a las empresas constructoras?

Ya se utiliza habitualmente en pavimentos y premoldeados. Por ejemplo, hay una empresa pequeña, FER-MENTO, que hace años ya realiza premoldeados de baja responsabilidad.  Hay cierto conservadurismo sobre la sustitución del acero por fibra, pero esto no sólo ocurre en Uruguay, sino que también en la industria de la construcción en todo el mundo. En parte, cierta razón tienen, ya que el producto necesita, como toda obra de ingeniería civil, de un buen nivel de seguridad. Por eso es que los pasos hay que darlos con cuidado. No obstante, esta tecnología, en otras partes del mundo se está aplicando con mucha seguridad, con resultados más que verificados.

Tampoco es un proceso fácil, porque esta tecnología en particular requiere para su utilización que toda la cadena de producción esté al tanto de los cambios que hay que hacer. Esto conlleva, por ejemplo, a ajustar la dosificación de la mezcla para no perder resistencia a compresión. Hay que saber cuáles son las reglas de diseño ya que, aunque están basadas en las mismas reglas que el hormigón armado convencional, hay que realizar ciertos ajustes para poder considerar la resistencia a la tracción que aporta la fibra.

Otro paso muy importante en este proceso es el del control de calidad. Hay que evaluar que este tipo de hormigón que se produce tenga la resistencia a tracción que se requiere, y con la cual se diseñó el elemento. Para esto, tenemos que tener laboratorios de ensayos capaces de realizar los ensayos específicos para evaluar este material. En cada uno de estos pasos hay que vencer pequeñas barreras, y lograr adaptaciones para introducir con éxito esta tecnología.

La idea de los proyectos que estamos llevando adelante es dar estos pasos de manera controlada, de la mano con las empresas y organismos que mañana podrían utilizar habitualmente este material. Además del que ya nombré, tenemos un par de proyectos llevados adelante por estudiantes de posgrado, y un proyecto más grande de un grupo de estudiantes de fin de carrera junto a la empresa Teyma, quien también está evaluando el uso de fibras. Con Teyma ya concluimos un proyecto para evaluar su uso en pavimentos, y ahora quieren explorar otras posibilidades. En particular, estamos haciendo los estudios para construir una losa elevada, que, a nuestro entender, sería la primera en Sudamérica. Lo haríamos primero a nivel experimental, a escala, pero al comprobar que funciona estructuralmente y rinde a nivel económico, se extendería a aplicaciones reales.

 

¿Cómo se puede trabajar la sustentabilidad edilicia asociada al hormigón?

Se puede trabajar en diferentes aspectos. Existe la sustentabilidad a nivel de diseño arquitectónico, por ejemplo, optimizando el uso de las fuentes de luz y calor naturales. En lo que refiere a mi trabajo, se podría intervenir en el diseño de la estructura misma del edificio. Las causas de emisiones de dióxido de carbono al ambiente, que es uno de los indicadores principales que se utiliza para evaluar la sostenibilidad, están asociadas principalmente a la producción de cemento. Aproximadamente la cifra es: por una tonelada de cemento que se coloca en un edificio, hay una tonelada de CO2 que se libera a la atmósfera. Esta es una cifra que impacta, e influye en aproximadamente el 5% de las emisiones totales de CO2 a nivel mundial. Sin embargo, hay varias formas de reducir ese consumo. Se podría apuntar a la estrategia mencionada por Sergio Cavalaro en su presentación: añadir valor agregado a nuestros productos. Solo por nombrar un ejemplo, se pueden lograr hormigones de mayor resistencia, sin aumentar la cantidad de cemento. Mediante una correcta selección de los materiales, y el uso de aditivos, se logra una matriz muy compacta con una baja relación agua/cemento. Se utilizaría un material que, por metro cúbico es más caro, pero serían necesarias menores cantidades. Se reducen los volúmenes de nuestras estructuras y el costo total, reduciendo a la par las emisiones de CO2. Son alternativas que vale la pena explorar.

Página 1 de 44
Top